Regulation of glycolysis and sugar phosphotransferase activities in Streptococcus lactis: growth in the presence of 2-deoxy-D-glucose.

نویسندگان

  • J Thompson
  • B M Chassy
چکیده

Streptococcus lactis K1 has the capacity to grow on many sugars, including sucrose and lactose, in the presence of high levels (greater than 500 mM) of 2-deoxy-D-glucose. Initially, growth of the organism was transiently halted by the addition of comparatively low concentrations (less than 0.5 mM) of the glucose analog to the culture. Inhibition was coincident with (i) rapid accumulation of 2-deoxy-D-glucose 6-phosphate (ca. 120 mM) and preferential utilization of phosphoenolpyruvate via the mannose:phosphotransferase system, (ii) depletion of phosphorylated glycolytic intermediates, and (iii) a 60% reduction in intracellular ATP concentration. During the 5- to 10-min period of bacteriostasis the intracellular concentration of 2-deoxy-D-glucose 6-phosphate rapidly declined, and the concentrations of glycolytic intermediates were restored to near-normal levels. When growth resumed, the cell doubling time (Td) and the steady-state levels of 2-deoxy-D-glucose 6-phosphate maintained by the cells were dependent upon the medium concentration of 2-deoxy-D-glucose. Resistance of S. lactis K1 to the potentially toxic analog was a consequence of negative regulation of the mannose:phosphotransferase system by two independent mechanisms. The first, short-term response occurred immediately after the initial "overshoot" accumulation of 2-deoxy-D-glucose 6-phosphate, and this mechanism reduced the activity (fine control) of the mannose:phosphotransferase system. The second, long-term mechanism resulted in repression of synthesis (coarse control) of enzyme IImannose. The two regulatory mechanisms reduced the rate of 2-deoxy-D-glucose translocation via the mannose:phosphotransferase system and minimized the activity of the phosphoenolpyruvate-dependent futile cycle of the glucose analog (J. Thompson and B. M. Chassy, J. Bacteriol. 151:1454-1465, 1982). Phosphoenolpyruvate was thus conserved for transport of the growth sugar and for generation of ATP required for biosynthetic and work functions of the growing cell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of hexitol catabolism in Streptococcus mutans.

Regulation of hexitol catabolism was investigated in Streptococcus mutans, a cariogenic human dental plaque bacterium. Induction of hexitol catabolic enzymes and phosphoenolpyruvate:hexitol phosphotransferase and hexitol phosphate dehydrogenase activities was regulated by an inducer exclusion mechanism initiated by D-glucose and 2-deoxy-D-glucose. Kinetic analysis of the inhibitory effect of 2-...

متن کامل

Regulation of sugar transport via the multiple sugar metabolism operon of Streptococcus mutans by the phosphoenolpyruvate phosphotransferase system.

In this report, we provide evidence that the transport of sugars in Streptococcus mutans via the multiple sugar metabolism system is regulated by the phosphoenolpyruvate phosphotransferase system. A ptsI-defective mutant (DC10), when grown on the multiple sugar metabolism system substrate raffinose, exhibited reduced growth, transport, and glycolytic activity with raffinose relative to the pare...

متن کامل

Regulation of lactose fermentation in group N streptococci.

Group N streptococci, which have the lactose phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS) and phospho-beta-d-galactosidase (beta-Pgal), grew rapidly on lactose and converted more than 90% of the sugar to l-lactate. In contrast, Streptococcus lactis 7962, which does not have a beta-Pgal, grew slowly on lactose and converted only 15% of the sugar to l-lactate. With glucose ...

متن کامل

Regulation of 2 - deoxyg I ucose phosphate accumulation in Lactococcus lactis vesicles by metabolite - activated , ATP - dependent phosphorylation of serine - 46 in HPr of the phosphotransferase system

Department o f Biology, University of California at San Diego, La Jolla, CA 92093-01 16, USA Lactococcus lactis takes up glucose and the nonmetabolizable glucose analogue 2-deoxyglucose (2DG) via the phosphotransferase system and extrudes the accumulated sugar phosphates in a process apparently dependent on a cytoplasmic sugar-phosphate phosphatase. Uptake of 2DG into L. lactis vesicles was sho...

متن کامل

Concentration-dependent repression of the soluble and membrane components of the Streptococcus mutans phosphoenolpyruvate: sugar phosphotransferase system by glucose.

Growth of Streptococcus mutans Ingbritt in continuous culture (pH 7.0, dilution rate of 0.1 h-1) at medium glucose concentrations above 2.6 mM resulted in repression of the sugar-specific membrane components, enzyme IIGlc (EIIGlc) and EIIMan, of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). In one experiment, significant repression (27-fold) was observed with 73 mM glucose when...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 154 2  شماره 

صفحات  -

تاریخ انتشار 1983